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Symmetries of Quasicrystals
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We consider tiling models of ``round quasicrystals'' which would have diffraction
patterns which are fully rotation invariant��rings instead of Bragg peaks. They
can be distinguished from glasses by self-similarity of the pattern of radii of the
rings.
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Quasicrystals were discovered by Schectman et al.(1) due to the unusual
10-fold rotational symmetry exhibited in certain directions by their (electron)
diffraction patterns, a symmetry which is well known to be impossible for
ordinary crystals. An early model to explain this symmetry was put
forward by Levine and Steinhardt, (2) based on an observation of Mackay(3)

that a particle configuration associated with a (3-dimensional version of ) a
planar Penrose tiling (Fig. 1) would have diffraction patterns with just such
a forbidden symmetry. (The qualitative features of the diffraction patterns
are independent of precisely how scatterers would be associated with each
type of tile, as long as no accidental symmetries are introduced by their
placement.)

There was some confusion at first due to the ``local 5-fold symmetry''
of the Penrose tilings; the Penrose tilings have arbitrarily large regions with
centers of 5-fold rotational symmetry. Any such symmetry in the real-space
pattern of the scatterers will produce the same rotational symmetry in the
diffraction pattern in certain directions. But it was eventually realized that
the key feature of the Penrose tilings is their ``statistical 10-fold symmetry''
��the fact that every finite pattern of tiles in the tiling appears in 10 different
rotational orientations with the same frequencies, the equality of the
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Fig. 1. A Penrose tiling.

frequencies giving rise to the 10-fold rotational symmetry of the diffraction
patterns;(4, 5) diffraction is only sensitive to such frequencies, and the well
known transference, of a real-space symmetry of the pattern of scatterers to
a symmetry in the diffraction intensity, is only a special case of this.

The other crucial feature in this modelling was that the Penrose tilings,
and its various ``aperiodic'' analogues in 2 and 3 dimensions, have ``match-
ing rules,'' which means that when the matching rules are used to make a
tiling from the tiles, the only tilings possible are the desired ones. Matching
rules govern how the boundaries of tiles may abut; Fig. 2 shows the two
basic quadrilateral shapes (the ``kite'' and ``dart'') for Penrose tiles, and
Fig. 3 shows how they can be modified by matching rules so as to restrict

Fig. 2. The kite and dart.
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Fig. 3. The modified kite and dart.

how edges of tiles may abut in a tiling. (If the Penrose matching rules are
not enforced, the quadrilateral Penrose tiles could be used to make unin-
teresting tilings.) The restricted tilings made using matching rules can be
thought of, at least heuristically, as energy ground states��abutting tiles
having ``low energy'' when their boundaries match and having ``high
energy'' otherwise; an allowed tiling (as opposed to a tiling made without
respect to the matching rules) is clearly a lowest energy configuration.
Many generalizations of the Penrose tilings were produced over the years
using a projection technique due to N. G. de Bruijn.(6) This technique
proved able to produce tilings, some with matching rules, with other for-
bidden rotational symmetries.(7)

A new phenomenon, not possible from tilings made by a projection
technique, was exhibited by the planar ``pinwheel'' tilings, (8) and the
recently published(9) 3-dimensional ``quaquaversal'' tilings (Figs. 4 and 5),
based on generalizing a different feature of the Penrose tilings��the fact
that they have a hierarchical structure. Such tilings can be made using
``inflation,'' that is, using rules for dividing tiles into smaller versions of
themselves. Figure 6 shows the inflation rule for pinwheel triangles. A pin-
wheel tiling can be made by starting with a 1, 2, - 5 right triangle, dividing
it, then expanding about some point by a linear factor of - 5, as shown.
Then apply the division rule to each of the 5 triangles thus produced and
expand the result about some point, getting 25 triangles, etc. The Penrose
tilings can also be obtained by an inflation rule instead of matching rules,
but we will not show this because it is a bit more complicated.(10)

So the Penrose tilings can be thought of as produced in any of three
essentially different ways��by enforcing matching rules, or by a projection
technique, or by an inflation process. The pinwheel and quaquaversal
tilings can be produced either by matching rules or an inflation pro-
cess, (8, 11) but not by projection. (It is necessary that the tilings used to
model materials be enforced by matching rules if one wants the structure
to be thought of as an energy ground state.)
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Fig. 4. A pinwheel tiling.

The new feature that the pinwheel and quaquaversal tilings have in
common is that they give rise to diffraction patterns which are fully rota-
tion invariant;(12, 9, 5) the diffraction consists of uniform rings rather than
isolated Bragg peaks. (It is not known if the rings are sharp or diffuse.) In
accordance with the above this just corresponds to the fact that any finite
structure in such a tiling appears in that tiling with the same frequency
(density) in all rotational orientations.

Fig. 5. A quaquaversal tiling.
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Fig. 6. The pinwheel substitution.

The value of this rotational symmetry of these tilings is that it points
to a possibility not previously known. Given diffraction data from bulk
material which is rotation invariant (made of rings), it has been natural to
suppose the material must be either a conglomerate of randomly oriented
microcrystals (like a powder) or a glass, i.e., a frozen liquid. These new
models point to the possibility that the material could be a single quasi-
crystal��a fully deterministic structure.

We emphasize that although the above tiling models (pinwheel and
quaquaversal) of what might be called ``round quasicrystals'' are to some
extent closely related to the older models built on Penrose-like tilings, there
are two points worth noting. First, it is not possible to make a model of
a round quasicrystal using projection techniques, which have been much
more widely used than inflation techniques. And second, the very possibility
of round quasicrystals is not well known, so that diffraction data showing
rings could easily be misinterpreted as indicating something other than a
fully deterministic (quasicrystalline) structure.

A possible way to distinguish such a quasicrystal from a glass would
be to examine the radial part of the diffraction data: if the material struc-
ture is hierarchical as in a quaquaversal tiling, then whatever pattern of
rings there is with radii between r1 and r2 will appear also with radii
between }r1 and }r2 , where } is the inflation factor of the hierarchy; }=2

831Symmetries of Quasicrystals



for the quaquaversal structure. We show next how this diffraction sym-
metry comes about for hierarchical structures.

We use the ergodic theory framework for diffraction(13, 5) as it is
particularly convenient for symmetries. In this framework one embeds the
structure of interest (for us a set of scatterers) in a space X of similar ones,
by making all translates of the original one and completing that set in some
natural metric (thus creating X ). This is completely analogous to the way
one analyzes a time series, by embedding it in a family of sequences. In the
usual way, the ergodic theorem associates frequencies in the structure of
scatterers, as discussed above, with a probability distribution on the space
X of such structures. Then this distribution allows one, just as in quantum
mechanics, to represent translations on X by unitary representations on the
Hilbert space H of square integrable functions on X, the unitarity resulting
from the fact that the frequencies are invariant under translation of the
structures.

Now let us consider symmetries other than translations. As noted
above the frequencies of Penrose tilings are invariant under rotation by
2?�10, and the frequencies of pinwheel and quaquaversal tilings are
invariant under all rotations. We can therefore repeat the argument at the
end of the last paragraph to show that rotation by 2?�10 is unitarily
implemented on the Hilbert space for Penrose tilings, and all rotations are
unitarily implemented on the Hilbert spaces for pinwheel and quaquaversal
tilings. In a more interesting way we can also repeat the argument for each
hierarchical system for its similarity }, which shows that stretching by
}=(1+- 5)�2 for Penrose tilings, }=- 5 for pinwheel tilings and }=2
for quaquaversal tilings are each unitarily implemented.

What is less obvious is that such rotational and similarity symmetries
lead to symmetries of the spectral projections of translations. For a system
such as the quaquaversal tilings it follows from the above and the unique-
ness of the spectral projections Es of translations that the projections are
symmetric in the sense that for any rotation R3 of Euclidean space we have
ER 3s=U 3EsU &3, where U 3 is the unitary representation on H of the
rotation R3, and E}s=U }EsU &}, where U } is the unitary representation
of the inflation }. Diffraction intensities are given by I(s) ds=d( f, Es f )
where f # H incorporates the structure of the charge density of a single
scatterer.(13, 5) Therefore I(R3s) ds=d(U 3f, EsU 3f ) and I(}s) ds=
d(U }f, EsU }f ). If the charge density of the scatterers is rotation invariant
then U 3f = f and the diffraction intensity is rotation invariant: I(R3s) ds=
I(s) ds. This is why diffraction off such a structure gives rings rather than
Bragg peaks.

We now come to the issue of distinguishing quasicrystals from glasses.
Of course the charge density cannot be invariant under the similarity }, so
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we cannot conclude as much as we could for rotations. However we still
have I(}s) ds=d(U }f, EsU }f ) . We just showed that this function is inde-
pendent of angle, and therefore only depends on the radial component |s|
of s. The diffraction rings are the local maxima of this function of |s|. And
although we cannot say that the function is invariant under }, we can still
see as evidence of the inflation symmetry a self-similarity in the structure
of these local maxima: whatever pattern of rings there is with radii between
r1 and r2 will appear also with radii between }r1 and }r2 . In other words
the pattern of radii repeats at different scales, although the intensity of the
diffraction at corresponding radii need not be simply related.

In summary, quasicrystals with a hierarchical structure exhibit a self-
similarity in the radial part of their diffraction, and this could be used to
distinguish ``round quasicrystals'' from glasses. Distinguishing them from
conglomerates of randomly oriented microcrystals is presumably easier.
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